Страница:
<< 1 2 [Всего задач: 8]
Задача
110136
(#03.4.11.6)
|
|
Сложность: 4- Классы: 7,8,9,10
|
На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди
пришедших, ушли. Затем те, у кого был ровно один знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, ..., 99 знакомых среди оставшихся к моменту их ухода.
Какое наибольшее число людей могло остаться в конце?
Задача
110124
(#03.4.11.7)
|
|
Сложность: 4 Классы: 10,11
|
Дан тетраэдр
ABCD. Вписанная в него сфера σ касается грани
ABC в точке
T. Сфера σ' касается грани
ABC в точке
T' и продолжений граней
ABD, BCD, CAD. Докажите, что прямые
AT и
AT' симметричны относительно биссектрисы угла
BAC.
Задача
110131
(#03.4.11.8)
|
|
Сложность: 4 Классы: 8,9,10,11
|
В наборе из 17 внешне одинаковых монет две фальшивых, отличающихся от остальных по весу. Известно, что суммарный вес двух фальшивых монет вдвое больше веса настоящей. Всегда ли можно ли определить пару фальшивых монет, совершив пять взвешиваний на чашечных весах без гирь? (Определять, какая из фальшивых монет тяжелее, не требуется.)
Страница:
<< 1 2 [Всего задач: 8]