Страница:
<< 1 2 [Всего задач: 7]
Петя увидел на доске несколько различных чисел и решил составить выражение, среди значений которого все эти числа есть, а других нет. Составляя выражение, Петя может использовать какие угодно числа, особый знак "±", а также обычные знаки "+", "–", "×" и скобки. Значения составленного выражения он вычисляет, выбирая для каждого знака "±" либо "+", либо "–" во всех возможных комбинациях. Например, если на доске были числа 4 и 6, подойдёт выражение 5 ± 1, а если на доске были числа 1, 2 и 3, то подойдёт выражение (2 ± 0,5) ± 0,5. Возможно ли составить необходимое выражение, если на доске были написаны
а) числа 1, 2, 4;
б) любые 100 различных действительных чисел?
Задача
65467
(#7)
|
|
Сложность: 4+ Классы: 8,9
|
У Деда Мороза было n сортов конфет, по k штук каждого сорта. Он распределил все конфеты как попало по k подаркам, в каждый – по n конфет, и раздал их k детям. Дети решили восстановить справедливость. Два ребёнка готовы передать друг другу по конфете, если каждый получает конфету сорта, которого у него нет. Всегда ли можно организовать серию обменов так, что у каждого окажутся конфеты всех сортов?
Страница:
<< 1 2 [Всего задач: 7]