ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCK и DCL.
Докажите, что треугольник AKL правильный.

Вниз   Решение


Рассматривается последовательность слов из букв "A" и "B". Первое слово – "A", второе – "B". k-е слово получается приписыванием к (k–2)-му слову справа (k–1)-го (так что начало последовательности имеет вид:  "A", "B", "AB", "BAB", "ABBAB", ...).  Может ли в последовательности встретиться "периодическое" слово, то есть слово, состоящее из нескольких (по меньшей мере двух) одинаковых кусков, идущих друг за другом, и только из них?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 202]      



Задача 102834

Тема:   [ Десятичная система счисления ]
Сложность: 2
Классы: 6,7

Из числа 1234567...5657585960 вычеркнуть 100 цифр так, чтобы оставшееся число было:  а) наименьшим;  б) наибольшим.

Прислать комментарий     Решение

Задача 102835

Темы:   [ Десятичная система счисления ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

Сколько нулей, единиц, троек? Подряд выписаны все целые числа от 1 до 100. Сколько раз в этой записи встречаются цифры: а) нуль? б) единица; в)три?
Прислать комментарий     Решение


Задача 102836

Темы:   [ Десятичная система счисления ]
[ Текстовые задачи ]
Сложность: 2
Классы: 7

Трехзначное число. Трехзначное число начинается с цифры 4. Если эту цифру перенести в конец числа, то получится число, составляющее 0,75 исходного. Найти исходное число.
Прислать комментарий     Решение


Задача 102845

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2
Классы: 6,7

Разрежем на четыре части. Разрежьте каждую из фигур на четыре равные части (резать можно по сторонам и диагоналям клеток).


Прислать комментарий     Решение

Задача 102852

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 6,7

Ищем верное утверждение. В тетради написано сто утверждений:
1) В этой тетради ровно одно ложное утверждение.
2) В этой тетради ровно два ложных утверждения.
...
100) В этой тетради ровно сто ложных утверждений.
Какое из этих утверждений верно, если известно, что только одно верное?
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 202]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .