ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 644]      



Задача 104117

Тема:   [ Наглядная геометрия ]
Сложность: 2
Классы: 7,8

В доску вбито 20 гвоздиков (см. рисунок). Расстояние между любыми соседними равно 1 дюйму. Натяните нитку длиной 19 дюймов от первого гвоздика до второго так, чтобы она прошла через все гвоздики.

Прислать комментарий     Решение

Задача 105193

Тема:   [ Раскраски ]
Сложность: 2
Классы: 7,8,9

Раскрасьте рисунок в четыре цвета так, чтобы соседние части были покрашены в разные цвета.
б) Можно ли обойтись тремя цветами?

Прислать комментарий     Решение

Задача 108731

Тема:   [ Задачи на проценты и отношения ]
Сложность: 2
Классы: 7,8,9

Посевной участок под рожь имеет прямоугольную форму. В рамках реструктуризации колхозных земель одну сторону участка увеличили на 20%, а другую уменьшили на 20%. Изменится ли в результате урожай ржи, и если изменится, то на сколько?

Прислать комментарий     Решение

Задача 98709

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6

Белоснежка вырезала из батиста большой квадрат и положила его в сундук. Пришел Первый Гном, достал квадрат, разрезал его на четыре квадрата и положил все четыре снова в сундук. Потом пришел Второй Гном, достал один из квадратов, разрезал его на четыре квадрата и положил все четыре снова в сундук. Потом пришел Третий Гном. И он достал один из квадратов, разрезал его на четыре квадрата и положил все четыре снова в сундук. То же самое проделали все остальные гномы. Сколько квадратов лежало в сундуке после того, как ушел Седьмой Гном?
Прислать комментарий     Решение


Задача 102854

Тема:   [ Ребусы ]
Сложность: 2
Классы: 6,7

Решить ребус AC · CC · K = 2002 (разным цифрам соответствуют разные буквы и наоборот).
Прислать комментарий     Решение


Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .