|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Задачи:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан квадрат ABCD. Точки P и Q лежат соответственно на сторонах AB и BC, причем BP = BQ. Пусть H — основание перпендикуляра, опущенного из точки B на отрезок PC. Докажите, что Найдите какие-нибудь семь последовательных натуральных чисел, каждое из которых можно изменить (увеличить или уменьшить) на 1 таким образом, чтобы произведение семи полученных в результате чисел равнялось произведению семи исходных чисел. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1942]
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1942] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|