|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан треугольник A0B0C0. На его сторонах A0B0, B0C0, C0A0 взяты точки C1, A1, B1 соответственно. На сторонах A1B1, B1C1, C1A1 треугольника A1B1C1 взяты соответственно точки C2, A2, B2, и вообще, на сторонах AnBn, BnCn, CnAn, треугольника AnBnCn взяты точки Cn + 1, An + 1, Bn + 1. Известно, что и вообще,
Доказать, что треугольник ABC, образованный пересечением прямых A0A1, B0B1, C0C1, содержится в треугольнике AnBnCn при любом n. |
Страница: 1 2 >> [Всего задач: 8]
— Вот, братцы, заблудился в лесу, до деревни далеко, а есть очень хочется. Пожалуйста, поделитесь со мной хлебом-солью! — Ну что ж, садись, чем богаты, тем и рады, — сказали лесорубы. Двенадцать лепешек были разделены поровну на троих. После еды охотник пошарил в карманах, нашел гривенник и полтинник и сказал: — Не обессудьте, братцы, больше ничего нет. Поделитесь, как знаете! Охотник ушел, а лесорубы заспорили. Прохор говорит: — По-моему, деньги надо разделить поровну! А Иван ему возражает: — За 12 лепешек — 60 к., значит за каждую лепешку по 5 к. Раз у тебя было 8 лепешек — тебе 40 к., у меня 4 лепешки — мне 20 к.! А как бы Вы разделили эти деньги между лесорубами?
Страница: 1 2 >> [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|