Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дана плоская замкнутая ломаная периметра 1. Доказать, что можно начертить круг радиусом $ {\frac{1}{4}}$, покрывающий всю ломаную.

Вниз   Решение


Сумма нескольких не обязательно различных положительных чисел не превосходила 100. Каждое из них заменили на новое следующим образом: сначала прологарифмировали по основанию 10, затем округлили стандартным образом до ближайшего целого числа и, наконец, возвели 10 в найденную целую степень. Могло ли оказаться так, что сумма новых чисел превышает 300?

ВверхВниз   Решение


Если имеется 100 любых целых чисел, то среди них всегда можно взять несколько (или может быть одно) так, что в сумме они дадут число, делящееся на 100. Доказать.

Вверх   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 559]      



Задача 30643  (#057)

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 7,8

Между цифрами двузначного числа, кратного трем, вставили нуль, и к полученному трехзначному числу прибавили удвоенную цифру его сотен. Получилось число, в 9 раз большее первоначального. Найдите исходное число.

Прислать комментарий     Решение


Задача 30644  (#058)

Тема:   [ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8

Найдите четырехзначное число, являющееся точным квадратом, первые две цифры которого равны между собой и последние две цифры которого также равны между собой.

Прислать комментарий     Решение


Задача 30645  (#059)

Тема:   [ Десятичная система счисления ]
Сложность: 4
Классы: 8,9

Найдите все трехзначные числа, каждая натуральная степень которых оканчивается на три цифры, составляющие первоначальное число.

Прислать комментарий     Решение


Задача 30646  (#060)

Тема:   [ Десятичная система счисления ]
Сложность: 4+
Классы: 8,9

К числу справа приписывают тройки. Докажите, что когда-нибудь получится составное число.

Прислать комментарий     Решение


Задача 30647  (#061)

Тема:   [ Десятичная система счисления ]
Сложность: 4
Классы: 8,9

Докажите, что все числа ряда являются составными.

Прислать комментарий     Решение


Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .