Страница: 1
2 >> [Всего задач: 9]
|
|
Сложность: 3 Классы: 9,10,11
|
Решите уравнение
$$\tan\pi {}x = [\lg \pi^x]-[\lg [\pi^x]],$$
где $[a]$ обозначает наибольшее целое
число, не превосходящее $a$.
|
|
Сложность: 3+ Классы: 10,11
|
Сумма нескольких не обязательно различных положительных чисел не превосходила 100. Каждое из них заменили на новое следующим образом: сначала прологарифмировали по основанию 10, затем округлили стандартным образом до ближайшего целого числа и, наконец, возвели 10 в найденную целую степень. Могло ли оказаться так, что сумма новых чисел превышает 300?
|
|
Сложность: 3+ Классы: 10,11
|
Какое наибольшее количество множителей вида можно вычеркнуть в левой части уравнения
так, чтобы число его натуральных корней не изменилось?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Найдите наименьшее натуральное число, кратное 80, в котором можно так переставить две его различные цифры, что получившееся число также будет кратно 80.
|
|
Сложность: 3+ Классы: 10,11
|
Незнайка знаком только с десятичными логарифмами и считает, что логарифм суммы двух чисел равен произведению их логарифмов, а логарифм разности двух чисел равен частному их логарифмов. Может ли Незнайка подобрать хотя бы одну пару чисел, для которой действительно верны одновременно оба этих равенства?
Страница: 1
2 >> [Всего задач: 9]