ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости дано n точек, причем из любой четверки этих точек можно выбросить одну точку так, что оставшиеся точки будут лежать на одной прямой. Докажите, что из данных точек можно выбросить одну точку так, что все оставшиеся точки будут лежать на одной прямой.

   Решение

Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 6702]      



Задача 54071

Темы:   [ Признаки и свойства параллелограмма ]
[ Параллелограммы ]
Сложность: 3-
Классы: 8,9

Точки M и N — середины противоположных сторон сторон BC и AD параллелограмма ABCD. Докажите, что четырёхугольник AMCN — параллеллограмм.

Прислать комментарий     Решение


Задача 54122

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 3-
Классы: 8,9

Стороны треугольника равны a и b. Через середину третьей стороны проведены прямые, параллельные двум другим сторонам. Найдите периметр полученного четырёхугольника.

Прислать комментарий     Решение


Задача 54191

Тема:   [ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9

Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит гипотенузу на отрезки, равные a и b. Найдите катеты.

Прислать комментарий     Решение

Задача 54518

Темы:   [ Построение треугольников по различным элементам ]
[ Метод ГМТ ]
Сложность: 3-
Классы: 8,9

Постройте треугольник по высоте, основанию и медиане, проведённой к этому основанию.

Прислать комментарий     Решение


Задача 54694

Темы:   [ Теорема синусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9

Гипотенуза AB прямоугольного треугольника ABC равна 9, катет BC равен 3. На гипотенузе взята точка M, причём AM : MB = 1 : 2. Найдите CM.

Прислать комментарий     Решение


Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .