|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Ученик Коля Васин при помощи метода математической индукции смог доказать, что в любом табуне все лошади одной масти. Если есть только одна лошадь, то она своей масти, так что база индукции верна. Для индуктивного перехода предположим, что есть n лошадей (с номерами от 1 до n). По индуктивному предположению лошади с номерами от 1 до n - 1 одинаковой масти. Аналогично лошади с номерами от 2 до n также имеют одинаковую масть. Но лошади с номерами от 2 до n - 1 не могут менять свою масть в зависимости от того как они сгруппированы — это лошади, а не хамелеоны. Поэтому все n лошадей должны быть одинаковой масти. Есть ли ошибка в этом рассуждении, и если есть, то какая? |
Страница: 1 [Всего задач: 1]
Сумму цифр числа a обозначим через S(a). Доказать, что если S(a) = S(2a), то число a делится на 9.
Страница: 1 [Всего задач: 1] |
||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|