ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Каждая точка числовой оси, координата которой – целое число, покрашена либо в красный, либо в синий цвет. Доказать, что найдётся цвет со следующим свойством: для каждого натурального числа k имеется бесконечно много точек этого цвета, координаты которых делятся на k. Расследуя одно дело, следователь Башковицкий обнаружил, что ключевой свидетель – тот из семьи Петровых, кто в тот роковой день пришёл домой прежде прочих. Расследование выявило следующие факты. |
Страница: 1 2 3 4 5 6 >> [Всего задач: 29]
Определение. Последовательность чисел a0, a1,...,an,..., которая удовлетворяет с заданными p и q соотношению
называется линейной рекуррентной (возвратной) последовательностью второго порядка. Уравнение
называется характеристическим уравнением последовательности (a n). Докажите, что если числа a0, a1 фиксированы, то все остальные члены последовательности {an} определяются однозначно.
Докажите, что геометрическая прогрессия
{an} = bx0n
удовлетворяет соотношению (11.2
) тогда и только тогда,
когда x0
-- корень характеристического уравнения (11.3
) последовательности
{an}.
Пусть характеристическое уравнение ( 11.3) последовательности {an} имеет два различных корня x1 и x2. Докажите, что при фиксированных a0, a1 существует ровно одна пара чисел c1, c2 такая, что
an = c1x1n + c2x2n (n = 0, 1, 2,...).
Пусть характеристическое уравнение (11.3) последовательности {an} имеет корень x0 кратности 2. Докажите, что при фиксированных a0, a1 существует ровно одна пара чисел c1, c2 такая, что
an = (c1 + c2n)x0n (n = 0, 1, 2,...).
Найдите формулу n-го члена для последовательностей,
заданных условиями (
n
Страница: 1 2 3 4 5 6 >> [Всего задач: 29]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке