ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан эллипс с фокусом $F$. Две перпендикулярные прямые, проходящие через $F$, пересекают эллипс в четырех точках. Касательные к эллипсу в этих точках образуют описанный вокруг эллипса четырехугольник. Докажите, что этот четырехугольник вписан в конику с фокусом $F$. Про квадратный трехчлен f(x) = ax² – ax + 1 известно, что | f(x)| ≤ 1 при 0 ≤ x ≤ 1. Найдите наибольшее возможное значение а. Рейс 608 "Аэрофлота" вылетает из Москвы в 12:00, а прилетает в Бишкек в 18:00 (по местному времени). Обратный рейс 607 вылетает в 8:00, а прилетает в 10:00. Сколько времени длится полет? В остроугольном треугольнике ABC отрезки BO и CO,
где O — центр описанной окружности, продолжены до пересечения в
точках D и E со сторонами AC и AB. Оказалось, что
В ковре размером 4 х 4 метра моль проела 15 дырок. Всегда ли можно вырезать коврик размером 1х1, не содержащий внутри дырок? (Дырки считаются точечными). |
Страница: << 1 2 3 [Всего задач: 12]
Отрезки АС и BD пересекаются в точке О. Периметр треугольника АВС равен периметру треугольника АВD, а периметр треугольника ACD равен периметру треугольника BCD. Найдите длину АО, если ВО = 10 см.
Какое наибольшее количество прямоугольников 4*1 можно разместить в квадрате 6*6 (не нарушая границ клеток)?
Страница: << 1 2 3 [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке