ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Четырёхугольник ABCD вписан в окружность Г c центром в точке O. Его диагонали AC и BD перпендикулярны и пересекаются в точке P, причём точка O лежит внутри треугольника BPC. На отрезке BO выбрана точка H так, что ∠BHP = 90°. Описанная окружность ω треугольника PHD вторично пересекает отрезок PC в точке Q. Докажите, что AP = CQ. Обозначим вершины и точки звеньев (неправильной) пятиконечной звезды так, как показано на рис. Докажите, что
A1C . B1D . C1E . D1A . E1B = A1D . B1E . C1A . D1B . E1C.
|
Страница: << 1 2 [Всего задач: 6]
В пространстве даны 200 точек. Каждые две из них соединены отрезком, причём отрезки не пересекаются друг с другом. Первый игрок красит каждый отрезок в один из k цветов, затем второй игрок красит в один из тех же цветов каждую точку. Если найдутся две точки и отрезок между ними, окрашенные в один цвет, выигрывает первый игрок, в противном случае второй. Докажите, что первый может гарантировать себе выигрыш, если
Страница: << 1 2 [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке