Страница:
<< 1 2 [Всего задач: 8]
Задача
65698
(#9.6)
|
|
Сложность: 4- Классы: 8,9,10
|
Назовём непустое (конечное или бесконечное) множество A, состоящее из натуральных чисел, полным, если для любых натуральных a и b (не обязательно различных и не обязательно лежащих в A), при которых a + b лежит в A, число ab также лежит в A. Найдите все полные множества натуральных чисел.
Задача
65711
(#9.7)
|
|
Сложность: 4 Классы: 9,10,11
|
В белой таблице 2016×2016 некоторые клетки окрасили чёрным. Назовём натуральное число k удачным, если k ≤ 2016, и в каждом из клетчатых квадратов со стороной k, расположенных в таблице, окрашено ровно k клеток. (Например, если все клетки чёрные, то удачным является только число 1.) Какое наибольшее количество чисел могут быть удачными?
Задача
65712
(#9.8)
|
|
Сложность: 4 Классы: 9,10,11
|
Дан выпуклый четырёхугольник ABCD, в котором ∠DAB = 90°. Пусть M – середина стороны BC. Оказалось. что ∠ADC = ∠BAM.
Докажите, что ∠ADB = ∠CAM.
Страница:
<< 1 2 [Всего задач: 8]