|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите неравенство для положительных значений переменных: 2(a³ + b³ + c³) ≥ ab(a + b) + ac(a + c) + bc(b + c). Решите систему уравнений: 1 – x1x2 = 0, 1 – x2x3 = 0, ... 1 – x2000x2001 = 0, 1 – x2001x1 = 0. То же, если f(0) = 13, f(1) = 17, f(2) = 20, f(3) = 30, f(2n) = 43 f(n) + 57 f(n + 1), f(2n + 1) = 91 f(n) + 179 f(n + 1) при n≥2. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 225]
Доказать: сумма
Доказать: произведение
Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 – под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин., одновременно над водой яблоко начинает есть птичка со скоростью 60 г/мин. Какая часть яблока достанется рыбке, а какая – птичке?
Пусть m и n – целые числа. Докажите, что mn(m + n) – чётное число.
Легко можно разрезать квадрат на два равных треугольника или два равных
четырёхугольника.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 225] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|