ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 67256

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Логика и теория множеств ]
[ Оценка + пример ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10

На столе лежат 2023 игральных кубика. За 1 рубль можно выбрать любой кубик и переставить его на любую из четырёх граней, которые сейчас для него боковые. За какое наименьшее количество рублей гарантированно удастся поставить все кубики так, чтобы на верхних гранях у них было поровну точек? (Количества точек на гранях каждого игрального кубика равны числам 1, 2, 3, 4, 5, 6, суммарное число точек на противоположных гранях всегда равно 7.)
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .