|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||
|
Версия для печати
Убрать все задачи n красных и n синих точек, строго чередуясь, разделили окружность на 2n дуг так, что каждые две смежные из них имеют различную длину. При этом длины каждой из этих дуг равны одному из трёх чисел: a, b или c. Докажите, что n-угольник с красными вершинами и n-угольник с синими вершинами имеют равные периметры и равные площади. |
Страница: 1 [Всего задач: 1]
В городе одна синяя площадь и n зелёных, причём каждая зелёная площадь соединена улицами с синей и с двумя зелёными, как показано на рисунке. На каждой из 2n улиц ввели одностороннее движение так, что на каждую площадь можно проехать и с каждой – уехать. Докажите, что с каждой площади этого города можно, не нарушая правил, доехать до любой из остальных.
Страница: 1 [Всего задач: 1] |
|||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|