ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Tran Quang Hung

Даны два одинаково ориентированных квадрата $A_1A_2A_3A_4$ и $B_1B_2B_3B_4$. Серединные перпендикуляры к отрезкам $A_1B_1$, $A_2B_2$, $A_3B_3$, $A_4B_4$ пересекают серединные перпендикуляры к отрезкам $A_2B_2$, $A_3B_3$, $A_4B_4$, $A_1B_1$ в точках $P$, $Q$, $R$, $S$ соответственно. Докажите, что $PR\perp QS$.

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 78298

Темы:   [ Алгебраические неравенства (прочее) ]
[ Наибольшая или наименьшая длина ]
Сложность: 4-
Классы: 10,11

Как надо расположить числа  1, 2, ..., 2n  в последовательности  a1, a2, ..., a2n,  чтобы сумма  |a1a2| + |a2a3| + ... + |a2n–1a2n| + |a2na1|  была наибольшей?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .