ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан лист клетчатой бумаги. Каждый узел сетки обозначается некоторой буквой. Каким наименьшим числом различных букв нужно обозначить эти узлы, чтобы на отрезке (идущем по сторонам клеток - прим.ред.), соединяющем два узла, обозначенных одинаковыми буквами, находился, по крайней мере, один узел, обозначенный одной из других букв?

   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 19]      



Задача 58360

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 3
Классы: 8,9

Докажите, что растяжение плоскости является аффинным преобразованием.
Прислать комментарий     Решение


Задача 58361

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 3
Классы: 8,9

Докажите, что при аффинном преобразовании параллельные прямые переходят в параллельные.
Прислать комментарий     Решение


Задача 58362

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 3
Классы: 8,9

Пусть A1, B1, C1, D1 — образы точек A, B, C, D при аффинном преобразовании. Докажите, что если $ \overrightarrow{AB}$ = $ \overrightarrow{CD}$, то $ \overrightarrow{A_1B_1}$ = $ \overrightarrow{C_1D_1}$.
Прислать комментарий     Решение


Задача 58363

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 4
Классы: 8,9

Докажите, что если L — аффинное преобразование, то
а) L($ \overrightarrow{0}$) = $ \overrightarrow{0}$;
б) L(a + b) = L(a) + L(b);
в) L(ka) = kL(a).
Прислать комментарий     Решение


Задача 58364

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 4
Классы: 8,9

Пусть A', B', C' — образы точек A, B, C при аффинном преобразовании L. Докажите, что если C делит отрезок AB в отношении AC : CB = p : q, то C' делит отрезок A'B' в том же отношении.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .