ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Пусть m0 и m1 – целые числа, 0 < m1 ≤ m0.
Докажите, что при некотором k > 1 существуют такие целые числа a0, a1, ..., ak и m2, ..., mk, что б) Докажите, что для любого s от k – 1 до 0 существуют такие числа us, vs, что msus + ms+1vs = d, где d = (m0, m1). На острове проживают 1234 жителя, каждый из которых либо рыцарь (который всегда говорит правду) либо лжец (который всегда лжёт). Однажды все жители острова разбились на пары, и каждый про своего соседа по паре сказал: "Он – рыцарь!", либо "Он – лжец!". Могло ли в итоге оказаться, что тех и других фраз произнесено поровну? Квадратный лист клетчатой бумаги разбит на меньшие квадраты отрезками, идущими по сторонам клеток. Треугольник A1B1C1 получен из треугольника
ABC поворотом на угол |
Страница: << 1 2 [Всего задач: 8]
Длина проекции фигуры
Докажите, что любые n точек на плоскости всегда можно накрыть
несколькими непересекающимися кругами так, что сумма их
диаметров меньше n и расстояние между любыми двумя из них
больше 1.
На круглом столе радиуса R расположено без наложений n
круглых монет радиуса r, причем больше нельзя положить ни
одной монеты. Докажите, что
R/r
Страница: << 1 2 [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке