ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 98508  (#1)

Темы:   [ Процессы и операции ]
[ Теория алгоритмов ]
[ Обратный ход ]
Сложность: 3
Классы: 8,9

Натуральное число n разрешается заменить на число ab, если  a + b = n  и числа a и b натуральные.
Можно ли с помощью таких замен получить из числа 22 число 2001?

Прислать комментарий     Решение

Задача 98509  (#2)

Темы:   [ Неравенства с медианами ]
[ Против большей стороны лежит больший угол ]
[ Вписанный угол, опирающийся на диаметр ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

В треугольнике одна из средних линий больше одной из медиан. Докажите, что этот треугольник – тупоугольный.

Прислать комментарий     Решение

Задача 98510  (#3)

Темы:   [ Средние величины ]
[ Ограниченность, монотонность ]
Сложность: 3+
Классы: 8,9

В магазин завезли 20 кг сыра, за ним выстроилась очередь. Отпустив сыр очередному покупателю, продавщица безошибочно подсчитывает средний вес покупки по всему проданному сыру и сообщает, на сколько человек хватит оставшегося сыра, если все будут покупать именно по этому среднему весу. Могла ли продавщица после каждого из первых 10 покупателей сообщать, что сыра хватит ещё ровно на 10 человек? Если да, то сколько сыра осталось в магазине после первых 10 покупателей?

Прислать комментарий     Решение

Задача 98511  (#4)

Темы:   [ Покрытия ]
[ Параллельный перенос (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

а) На столе лежат 5 одинаковых бумажных треугольников. Каждый разрешается сдвигать в любом направлении, не поворачивая. Верно ли, что всегда каждый из этих треугольников можно накрыть четырьмя другими?
б) На столе лежат 5 одинаковых равносторонних бумажных треугольников. Каждый разрешается сдвигать в любом направлении, не поворачивая. Докажите, что каждый из этих треугольников можно накрыть четырьмя другими.

Прислать комментарий     Решение

Задача 98512  (#5)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 4-
Классы: 10,11

На доске размером 15×15 клеток расставили 15 ладей, не бьющих друг друга. Затем каждую ладью передвинули ходом коня.
Докажите, что теперь какие-то две ладьи будут бить друг друга.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .