|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Кружки, факультативы, спецкурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть A и B – два прямоугольника. Из прямоугольников, равных A, сложили прямоугольник, подобный B. Пусть $A_1$, $B_1$, $C_1$ – середины сторон $BC$, $AC$ и $AB$ треугольника $ABC$, $K$ – основание высоты, проведенной из вершины $A$, а $L$ – точка касания вписанной окружности $\gamma$ со стороной $BC$. Описанные окружности треугольников $LKB_1$ и $A_1LC_1$ вторично пересекают прямую $B_1C_1$ в точках $X$ и $Y$ соответственно. Окружность $\gamma$ пересекает эту прямую в точках $Z$ и $T$. Докажите, что $XZ = YT$. Отличник Поликарп составил огромное число, выписав натуральные числа от 1 до 500: 123…1011…499500. Двоечник Колька стер у этого числа первые 500 цифр. Как Вы думаете, с какой цифры начинается оставшееся число? Пусть точки $P$ и $Q$ изогонально сопряжены относительно треугольника $ABC$. Точка $A_1$, лежащая на дуге $BC$ описанной около треугольника окружности $\omega$, удовлетворяет условию $\angle BA_1P=\angle CA_1Q$. Точки $B_1$ и $C_1$ определены аналогично. Докажите, что прямые $AA_1$, $BB_1$ и $CC_1$ пересекаются в одной точке. Четыре кузнечика сидят в вершинах квадрата. Каждую минуту один из них прыгает в точку, симметричную ему относительно другого кузнечика. Докажите, что кузнечики не могут в некоторый момент оказаться в вершинах квадрата большего размера. На лужайке босоногих мальчиков столько же, сколько обутых девочек. Кого на лужайке больше — девочек или босоногих детей? |
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 644]
Попробуйте найти два числа, идущих подряд; у первого из которых сумма цифр равна 8, а второе делится на 8.
Начнём считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвёртый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т. д. Какой палец будет по счету 2004-м?
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 644] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|