Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Даны положительные числа x, y, z. Докажите неравенство   

Вниз   Решение


Шифр кодового замка является двузначным числом. Буратино забыл код, но помнит, что сумма цифр этого числа, сложенная с их произведением, равна самому числу. Напишите все возможные варианты кода, чтобы Буратино смог быстрее открыть замок.

ВверхВниз   Решение


Дан квадрат. Найдите геометрическое место середин гипотенуз прямоугольных треугольников, вершины которых лежат на попарно различных сторонах квадрата и не совпадают с его вершинами.

ВверхВниз   Решение


Автор: Карасев Р.

2011 складов соединены дорогами так, что от каждого склада можно проехать к любому другому, возможно, проехав по нескольким дорогам. На складах находится по  x1, ..., x2011  кг цемента соответственно. За один рейс можно провезти с произвольного склада на другой по соединяющей их дороге произвольное количество цемента. В итоге на складах по плану должно оказаться по  y1, ..., y2011  кг цемента соответственно, причём
x1 + x2 + ... + x2011 = y1 + y2 + ... + y2011. За какое минимальное количество рейсов можно выполнить план при любых значениях чисел xi и yi и любой схеме дорог?

ВверхВниз   Решение


Играют двое. В начале игры есть одна палочка. Первый игрок ломает эту палочку на две части. И так игроки по очереди ломают на две части любую палочку из имеющихся к данному моменту. Если, сломав палочку, игрок может сложить из всех имеющихся палочек один или несколько отдельных треугольников (каждый – ровно из трёх палочек), то он выиграл. Кто из игроков (первый или второй) может обеспечить себе победу независимо от действий другого игрока?

ВверхВниз   Решение


У Пети в кармане несколько монет. Если Петя наугад вытащит из кармана 3 монеты, среди них обязательно найдётся монета "1 рубль". Если Петя наугад вытащит 4 монеты из кармана, среди них обязательно найдётся монета "2 рубля". Петя вытащил из кармана 5 монет. Назовите эти монеты.

ВверхВниз   Решение


В колоде n карт. Часть из них лежит рубашками вверх, остальные – рубашками вниз. За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить ее сверху колоды. За какое наименьшее число ходов при любом начальном расположении карт можно добиться того, чтобы все карты лежали рубашками вниз?

ВверхВниз   Решение


Точка M – середина основания AC остроугольного равнобедренного треугольника ABC. Точка N симметрична M относительно BC. Прямая, параллельная AC и проходящая через точку N, пересекает сторону AB в точке K. Найдите угол AKC.

ВверхВниз   Решение


а) Леша поднимается по лестнице из 10 ступенек. За один раз он прыгает вверх либо на одну ступеньку, либо на две ступеньки. Сколькими способами Леша может подняться по лестнице?
б) При спуске с той же лестницы Леша перепрыгивает через некоторые ступеньки (может даже через все 10). Сколькими способами он может спуститься по этой лестнице?

ВверхВниз   Решение


В натуральном числе A переставили цифры, получив число B. Известно, что     Найдите наименьшее возможное значение n.

ВверхВниз   Решение


Впишите в клетки квадрата 3×3 числа так, что если в качестве коэффициентов a, b, c  (a ≠ 0)  квадратного уравнения  ax² + bx + c = 0  взять числа из любой строки (слева направо), столбца или диагонали (сверху вниз) квадрата, то у получившегося уравнения будет хотя бы один корень.

ВверхВниз   Решение


В банановой республике прошли выборы в парламент, в которых участвовали все жители. Все голосовавшие за партию "Мандарин" любят мандарины. Среди голосовавших за другие партии 90% не любят мандарины. Сколько процентов голосов набрала партия "Мандарин" на выборах, если ровно 46% жителей любят мандарины?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 103831

Темы:   [ Подсчет двумя способами ]
[ Задачи на проценты и отношения ]
Сложность: 3
Классы: 7

В банановой республике прошли выборы в парламент, в которых участвовали все жители. Все голосовавшие за партию "Мандарин" любят мандарины. Среди голосовавших за другие партии 90% не любят мандарины. Сколько процентов голосов набрала партия "Мандарин" на выборах, если ровно 46% жителей любят мандарины?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .