Страница: 1
2 3 >> [Всего задач: 14]
|
|
Сложность: 3+ Классы: 9,10,11
|
Боковая поверхность прямоугольного параллелепипеда с основанием a×b и высотой c (a, b и c – натуральные числа) оклеена по клеточкам без наложений и пропусков прямоугольниками со сторонами, параллельными рёбрам параллелепипеда, каждый из которых состоит из чётного числа единичных квадратов. При этом разрешается перегибать прямоугольники через боковые ребра параллелепипеда. Докажите, что если c нечётно, то число способов оклейки чётно.
|
|
Сложность: 4- Классы: 8,9,10
|
Натуральные числа от 1 до 1000 по одному выписали на карточки, а затем накрыли этими карточками
какие-то 1000 клеток прямоугольника
1
x 1994
. Если соседняя справа от карточки с числом
n
клетка свободна, то за один ход ее разрешается накрыть карточкой с числом
n+1
. Докажите, что
нельзя сделать более полумиллиона таких ходов.
|
|
Сложность: 4 Классы: 7,8,9,10
|
В стране несколько городов, некоторые пары городов соединены беспосадочными
рейсами одной из N авиакомпаний, причём из каждого города есть ровно по
одному рейсу каждой из авиакомпаний. Известно, что из каждого города можно
долететь до любого другого (возможно, с пересадками). Из-за финансового кризиса был закрыт N – 1 рейс, но ни в одной из авиакомпаний не закрыли более одного рейса. Докажите, что по-прежнему из каждого города можно
долететь до любого другого.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
В клетках таблицы 2000×2000 записаны числа 1 и –1. Известно, что сумма всех чисел в таблице неотрицательна. Докажите, что найдутся 1000 строк и 1000 столбцов таблицы, для которых сумма чисел, записанных в клетках, находящихся на их пересечении, не меньше 1000.
|
|
Сложность: 4+ Классы: 8,9,10
|
В стране несколько городов, некоторые пары городов соединены дорогами. При этом из каждого города выходит хотя бы три дороги.
Докажите, что существует циклический маршрут, длина которого не делится на 3.
Страница: 1
2 3 >> [Всего задач: 14]