Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

По кругу расставлены 15 натуральных чисел. Докажите, что найдутся два соседних числа такие, что после их выкидывания оставшиеся числа нельзя разбить на две группы с равной суммой.

   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 22]      



Задача 103986

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3
Классы: 6,7,8

На третье занятие кружка по математике пришло 17 человек. Может ли случиться так, что каждая девочка знакома ровно с тремя из присутствующих на занятии кружковцев, а каждый мальчик ровно с пятью?

Прислать комментарий     Решение

Задача 103985

Темы:   [ Четность и нечетность ]
[ Метод спуска ]
Сложность: 4
Классы: 6,7,8

По кругу расставлены 15 натуральных чисел. Докажите, что найдутся два соседних числа такие, что после их выкидывания оставшиеся числа нельзя разбить на две группы с равной суммой.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .