|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что если центр вписанной в четырехугольник окружности совпадает с точкой пересечения диагоналей, то этот четырехугольник — ромб. Докажите, что если a + b + c + d > 0, a > c, b > d, то |a + b| > |c + d|. Вершины треугольника ABC расположены в узлах целочисленной решетки, причем на его сторонах других узлов нет, а внутри его есть ровно один узел O. Докажите, что O — точка пересечения медиан треугольника ABC. Без ореха (от дупла до орешника) белка бежит со скоростью 4 м/с, а с орехом (от орешника до дупла) – со скоростью 2 м/с. На путь от дупла до орешника и обратно она тратит 54 секунды. Найдите расстояние от дупла до орешника. |
Страница: 1 [Всего задач: 5]
В примере на сложение двух чисел первое слагаемое меньше суммы на 2000, а сумма больше второго слагаемого на 6.
Без ореха (от дупла до орешника) белка бежит со скоростью 4 м/с, а с орехом (от орешника до дупла) – со скоростью 2 м/с. На путь от дупла до орешника и обратно она тратит 54 секунды. Найдите расстояние от дупла до орешника.
В забеге от Воробьёвых гор до Красной площади приняли участие три спортсмена. Сначала стартовал Гриша, затем – Саша, и последней – Лена. После финиша выяснилось, что во время забега Гриша обгонял других 10 раз, Лена – 6 раз, Саша – 4 раза, причём все трое ни разу не оказывались в одной точке одновременно. В каком порядке финишировали спортсмены, если известно, что они пришли к финишу в разное время?
Страница: 1 [Всего задач: 5] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|