ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Прямые AP, BP и CP пересекают стороны
треугольника ABC (или их продолжения) в точках A1, B1 и C1.
Докажите, что:
На квадратном столе лежит квадратная скатерть так, что ни один угол стола не закрыт, но с каждой стороны стола свисает треугольный кусок скатерти. Известно, что какие-то два соседних куска равны. Докажите, что и два других куска тоже равны. (Скатерть нигде не накладывается сама на себя, её размеры могут отличаться от размеров стола.) В доску вбито 20 гвоздиков (см. рисунок). Расстояние между любыми соседними равно 1 дюйму. Натяните нитку длиной 19 дюймов от первого гвоздика до второго так, чтобы она прошла через все гвоздики. |
Страница: 1 2 >> [Всего задач: 6]
Представьте, что куб стоит на столе на одной своей вершине (так, что верхняя вершина расположена точно над нижней) и освещён прямо сверху. Какая в этом случае получается тень от куба?
В доску вбито 20 гвоздиков (см. рисунок). Расстояние между любыми соседними равно 1 дюйму. Натяните нитку длиной 19 дюймов от первого гвоздика до второго так, чтобы она прошла через все гвоздики.
Легко можно разрезать квадрат на два равных треугольника или два равных
четырёхугольника.
На прозрачном столе стоит куб 3×3×3, составленный из 27 одинаковых кубиков. Со всех шести сторон (спереди, сзади, слева, справа, сверху, снизу) мы видим квадрат 3×3. Какое наибольшее число кубиков можно убрать так, чтобы со всех сторон был виден квадрат 3×3 и при этом оставшаяся система кубиков не разваливалась?
На плоскости даны 9 точек (см. рисунок). Перечеркните их все четырьмя прямыми отрезками, не отрывая карандаша от бумаги.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке