ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В выпуклом многоугольнике на плоскости содержится не меньше m² + 1 точек с целыми координатами. Обозначим через S(m) сумму цифр натурального числа m. Докажите, что существует бесконечно много таких натуральных n, что S(3n) ≥ S(3n+1). Можно ли доску размером 5×5 заполнить доминошками размером 1×2? Ma, Mb, Mc – середины сторон, Ha, Hb, Hc – основания высот треугольника ABC площади S. |
Страница: 1 [Всего задач: 1]
Ma, Mb, Mc – середины сторон, Ha, Hb, Hc – основания высот треугольника ABC площади S.
Страница: 1 [Всего задач: 1]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке