Страница: 1 [Всего задач: 5]
Задача
98271
(#1)
|
|
Сложность: 3+ Классы: 6,7,8
|
На плоскости расположен квадрат и невидимыми чернилами нанесена точка P. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит P (если P лежит на прямой, то он говорит, что P лежит на прямой).
Какое наименьшее число таких вопросов необходимо задать, чтобы узнать, лежит ли точка P внутри квадрата?
Задача
98272
(#2)
|
|
Сложность: 3+ Классы: 7,8,9
|
Существуют ли 100 таких натуральных чисел, что их сумма равна их наименьшему
общему кратному?
(Среди чисел могут быть равные.)
|
|
Сложность: 3+ Классы: 8,9,10
|
Прямоугольник ABCD (AB = a, BC = b) сложили так, что получился пятиугольник площади S (C легла в A). Докажите, что S < ¾ ab.
|
|
Сложность: 4- Классы: 8,9,10
|
Ma, Mb, Mc – середины сторон,
Ha, Hb, Hc – основания высот треугольника
ABC площади
S.
Доказать, что из отрезков
MaHb, MbHc, McHa можно составить треугольник, найти его площадь.
Задача
98282
(#5)
|
|
Сложность: 3+ Классы: 6,7,8
|
а) Существуют ли четыре таких различных натуральных числа, что
сумма каждых трёх из них есть простое число?
б) Существуют ли пять таких различных натуральных чисел, что сумма
каждых трёх из них есть простое число?
Страница: 1 [Всего задач: 5]