ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Число 1/42 разложили в бесконечную десятичную дробь. Затем вычеркнули 1997-ю цифру после запятой, а все цифры, стоящие справа от вычеркнутой цифры, сдвинули на 1 влево. Какое число больше: новое или первоначальное?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 107628  (#1)

Темы:   [ Математическая логика (прочее) ]
[ Процессы и операции ]
Сложность: 3
Классы: 6,7,8

К берегу Нила подошла компания из шести человек: три бедуина, каждый со своей женой. У берега находится лодка с вёслами, которая выдерживает только двух человек. Бедуин не может допустить, чтобы его жена находилась без него в обществе другого мужчины. Может ли вся компания переправиться на другой берег?
Прислать комментарий     Решение


Задача 107629  (#2)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 4-
Классы: 7,8,9

В треугольнике ABC угол A равен 120°, точка D лежит на биссектрисе угла A, и  AD = AB + AC.  Докажите, что треугольник DBC – равносторонний.

Прислать комментарий     Решение

Задача 107630  (#3)

Темы:   [ Делимость чисел. Общие свойства ]
[ Ориентированные графы ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9,10

По кругу записаны семь натуральных чисел. Известно, что в каждой паре соседних чисел одно делится на другое.
Докажите, что найдётся пара и не соседних чисел с таким же свойством.

Прислать комментарий     Решение

Задача 107631  (#4)

Темы:   [ Периодические и непериодические дроби ]
[ Деление с остатком ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 8,9,10

Число 1/42 разложили в бесконечную десятичную дробь. Затем вычеркнули 1997-ю цифру после запятой, а все цифры, стоящие справа от вычеркнутой цифры, сдвинули на 1 влево. Какое число больше: новое или первоначальное?

Прислать комментарий     Решение

Задача 107632  (#5)

Темы:   [ Разные задачи на разрезания ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 7,8,9,10

Можно ли разрезать равносторонний треугольник на пять попарно различных равнобедренных треугольников.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .