ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В клетках квадратной таблицы $n\times n$, где $n$ > 1, требуется расставить различные целые числа от 1 до $n^2$ так, чтобы каждые два последовательных числа оказались в соседних по стороне клетках, а каждые два числа, дающие одинаковые остатки при делении на $n$, – в разных строках и в разных столбцах. При каких $n$ это возможно? РешениеДоказать, что остаток от деления простого числа на 30 – простое число или единица. Решение |
Страница: 1 2 3 4 5 6 >> [Всего задач: 30]
Докажите, что существует бесконечно много простых чисел.
Найдите все простые числа, которые отличаются на 17.
Доказать, что остаток от деления простого числа на 30 – простое число или единица.
Пусть n > 2. Докажите, что между n и n! есть по крайней мере одно простое число.
Найдите все простые числа p и q, для которых выполняется равенство p² – 2q² = 1.
Страница: 1 2 3 4 5 6 >> [Всего задач: 30] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|