ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что не существует многогранника, имеющего 7 рёбер.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 108979

Тема:   [ Системы линейных уравнений ]
Сложность: 3+
Классы: 7,8,9

Решить систему уравнений с n неизвестными  

Прислать комментарий     Решение

Задача 108983

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Найти углы треугольника, если известно, что все вписанные в него квадраты равны (каждый из квадратов вписан так, что две его вершины лежат на одной из сторон треугольника, а остальные вершины на двух других сторонах треугольника).

Прислать комментарий     Решение

Задача 108987

Темы:   [ Свойства коэффициентов многочлена ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3+
Классы: 8,9,10

Какими должны быть значения a и b,  чтобы многочлен   x4 + x³ + 2x² + ax + b был полным квадратом?

Прислать комментарий     Решение

Задача 108988

Темы:   [ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Доказать, что из равенства     вытекает равенство     если k нечётно.

Прислать комментарий     Решение

Задача 109149

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3+
Классы: 10,11

Доказать, что не существует многогранника, имеющего 7 рёбер.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .