ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В примере на сложение двух чисел первое слагаемое меньше суммы на 2000, а сумма больше второго слагаемого на 6. Аудитория имеет форму правильного шестиугольника со стороной 3 м. В каждом углу установлен храпометр, определяющий число спящих студентов на расстоянии, не превышающем 3 м. Сколько всего спящих студентов в аудитории, если сумма показаний храпометров равна 7? Внутри угла с вершиной M отмечена точка A. Из этой точки выпустили шар, который отразился от одной стороны угла в точке B, затем от другой стороны в точке C и вернулся в A ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр O описанной окружности треугольника BCM лежит на прямой AM. (Шар считайте точкой.) В неравнобедреном треугольнике ABC точка I – центр вписанной окружности, I' – центр окружности, касающейся стороны AB и продолжений сторон CB и CA; L и L' – точки, в которых сторона AB касается этих окружностей. Докажите, что не существует многочлена степени не ниже двух с целыми неотрицательными коэффициентами, значение которого при любом простом p является простым числом. Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, 1/70 – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить? В ряд выписаны действительные числа a1, a2, a3, ..., a1996. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001. В выпуклом пятиугольнике проведены все диагонали. Каждая вершина и каждая точка пересечения диагоналей окрашены в синий цвет. Вася хочет перекрасить эти синие точки в красный цвет. За одну операцию ему разрешается поменять цвет всех окрашенных точек, принадлежащих либо одной из сторон либо одной из диагоналей на противоположный (синие точки становятся красными, а красные – синими). Сможет ли он добиться желаемого, выполнив какое-то количество описанных операций? Определите, на какую наибольшую натуральную степень числа 2007 делится 2007! Сторону АВ треугольника АВС продолжили за вершину В и выбрали на луче АВ точку А1 так, что точка В – середина отрезка АА1 . Сторону ВС продолжили за вершину С и отметили на продолжении точку В1 так, что С – середина ВВ1 . Аналогично, продолжили сторону СА за вершину А и отметили на продолжении точку С1 так, что А – середина СС1 . Найдите площадь треугольника А1В1С1 , если площадь треугольника АВС равна1. |
Страница: 1 2 >> [Всего задач: 6]
Сторону АВ треугольника АВС продолжили за вершину В и выбрали на луче АВ точку А1 так, что точка В – середина отрезка АА1 . Сторону ВС продолжили за вершину С и отметили на продолжении точку В1 так, что С – середина ВВ1 . Аналогично, продолжили сторону СА за вершину А и отметили на продолжении точку С1 так, что А – середина СС1 . Найдите площадь треугольника А1В1С1 , если площадь треугольника АВС равна1.
Может ли вершина параболы у = 4х² – 4(а + 1)х + а лежать во второй координатной четверти при каком-нибудь значении а?
Определите, на какую наибольшую натуральную степень числа 2007 делится 2007!
В выпуклом пятиугольнике проведены все диагонали. Каждая вершина и каждая точка пересечения диагоналей окрашены в синий цвет. Вася хочет перекрасить эти синие точки в красный цвет. За одну операцию ему разрешается поменять цвет всех окрашенных точек, принадлежащих либо одной из сторон либо одной из диагоналей на противоположный (синие точки становятся красными, а красные – синими). Сможет ли он добиться желаемого, выполнив какое-то количество описанных операций?
Петя может располагать три отрезка в пространстве произвольным образом.
После того как Петя расположит эти отрезки, Андрей пытается найти плоскость и спроектировать на нее отрезки так,
чтобы проекции всех трех были равны. Всегда ли ему удастся это сделать, если:
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке