ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На плоскости дано бесконечное множество точек S , при этом в любом квадрате 1×1 лежит конечное число точек из множества S . Докажите, что найдутся две разные точки A и B из S такие, что для любой другой точки X из S выполняются неравенства: Решение |
Страница: << 1 2 3 4 5 6 7 [Всего задач: 32]
Докажите, что в любом множестве, состоящем из 117 попарно различных трёхзначных чисел, можно выбрать четыре попарно непересекающихся подмножества, суммы чисел в которых равны.
Страница: << 1 2 3 4 5 6 7 [Всего задач: 32] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|