ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На листке бумаги написаны натуральные числа от 1 до N. Игроки по очереди обводят в кружок одно число, соблюдая условие: любые два уже обведённых
числа должны быть взаимно простыми. Два раза число обводить нельзя. Проигрывает тот, у кого нет хода. |
Страница: 1 [Всего задач: 3]
Есть длинный ряд луночек. В трёх из них лежит по шарику. Игроки по очереди делают ход: берут один из крайних шариков и перекладывают в свободную луночку между двумя другими. Тот, кто не может сделать ход, считается проигравшим.
Кто – начинающий игру или ходящий вторым – победит при правильной игре при показанных на рисунках первоначальных расположениях шариков?
На листке бумаги написаны натуральные числа от 1 до N. Игроки по очереди обводят в кружок одно число, соблюдая условие: любые два уже обведённых
числа должны быть взаимно простыми. Два раза число обводить нельзя. Проигрывает тот, у кого нет хода.
Паук в лесу сплёл паутину. Длинные нити привязал к веткам. И в эту паутину залетела бабочка. За один ход бабочка или паук могут передвинуться по отрезку нити в соседнюю точку пересечения нитей; бабочка также может выбраться на конец нити (ветку), если перед этим находилась в соседней точке пересечения. Они ходят по очереди, начинает бабочка. Если бабочка смогла добраться до веток, она спаслась (это её победа). Если паук добрался до бабочки, он её съедает (и это его победа). Возможен и такой исход, когда никто не побеждает, а игра длится бесконечно. а) Чем закончится игра в ситуации, изображённой на рисунке? (У паутины четыре кольца и семь радиусов.б) Чем закончится игра, если колец три, а радиусов семь? в) Чем закончится игра, если колец четыре, а радиусов десять? г) Разберите общий случай: K ≥ 2 колец и R ≥ 3 радиусов.
Страница: 1 [Всего задач: 3] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|