ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Пусть  a1, ..., a10  – различные натуральные числа, не меньшие 3, сумма которых равна 678. Может ли сумма остатков от деления некоторого натурального числа n на 20 чисел  a1, a2, ..., a10, 2a1, 2a2,..., 2a10  равняться 2012?

Вниз   Решение


Дан выпуклый четырёхугольник ABCD и точка O внутри него. Известно, что  ∠AOB = ∠COD = 120°,  AO = OB  и  CO = OD.  Пусть K, L и M – середины отрезков AB, BC и CD соответственно. Докажите, что
  а)  KL = LM;
  б) треугольник KLM – правильный.

ВверхВниз   Решение


Найдите наибольшее значение функции y = 2x2-5x+ln x-7 на отрезке [;] .

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 112831

Темы:   [ 3.2 ]
[ 3.3 ]
[ 4.2.1 ]
Сложность: 2
Классы: 11

Найдите наибольшее значение функции y = 2x2-5x+ln x-7 на отрезке [;] .
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .