ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Про группу из пяти человек известно, что: Алеша на 1 год старше Алексеева, Кто старше и на сколько: Дима или Дмитриев? Решение |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42]
Про группу из пяти человек известно, что: Алеша на 1 год старше Алексеева, Кто старше и на сколько: Дима или Дмитриев?
На плоскости даны шесть точек. Известно, что их можно разбить на две тройки так, что получатся два треугольника. Всегда ли можно разбить эти точки на две тройки так, чтобы получились два треугольника, которые не имеют друг с другом никаких общих точек (ни внутри, ни на границе)?
Одной операцией к числу можно либо прибавить 9, либо стереть в нём в любом месте цифру 1.
На доске написано несколько натуральных чисел. Сумма любых двух из них – натуральная степень двойки.
Пусть C(n) – количество различных простых делителей числа n. (Например, C(10) = 2, C(11) = 1, C(12) = 2.)
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|