Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Разрежьте каждый из равносторонних треугольников со сторонами 2 и 3 на три части и сложите из всех полученных частей равносторонний треугольник.

Вниз   Решение


Можно ли выписать в ряд по одному разу цифры от 1 до 9 так, чтобы между единицей и двойкой, двойкой и тройкой, ..., восьмёркой и девяткой было нечётное число цифр?

ВверхВниз   Решение


Купец случайно перемешал конфеты первого сорта (по 3 руб. за фунт) и конфеты второго сорта (по 2 руб. за фунт). По какой цене надо продавать эту смесь, чтобы выручить ту же сумму, если известно, что первоначально общая стоимость всех конфет первого сорта была равна общей стоимости всех конфет второго сорта?

ВверхВниз   Решение


Многочлен степени  $n > 1$  имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$

ВверхВниз   Решение


Автор: Фольклор

Восемь волейбольных команд провели турнир в один круг (каждая команда сыграла с каждой один раз). Доказать, что можно выделить такие четыре команды A, B, C и D, что A выиграла у B, C и D; B выиграла у C и D, C выиграла у D.

ВверхВниз   Решение


Дан числовой набор x1, ..., xn. Рассмотрим функцию  .
  а) Верно ли, что функция d(t) принимает наименьшее значение в единственной точке, каков бы ни был набор чисел x1, ..., xn?
  б) Сравните значения d(c) и d(m), где  ,  а m – медиана указанного набора.

ВверхВниз   Решение


Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы?

Вверх   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 559]      



Задача 30321  (#008)

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 5,6,7,8

Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы?

Прислать комментарий     Решение

Задача 30322  (#009)

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 6,7

Сколькими способами можно заполнить одну карточку в лотерее "Спортпрогноз"? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счёт роли не играет).

Прислать комментарий     Решение

Задача 60340  (#010)

Темы:   [ Правило произведения ]
[ Классическая комбинаторика (прочее) ]
Сложность: 2+
Классы: 7,8

Алфавит племени Мумбо-Юмбо состоит из трёх букв. Словом является любая последовательность, состоящая не более чем из четырёх букв.
Сколько слов в языке племени Мумбо-Юмбо?

Прислать комментарий     Решение

Задача 30324  (#011)

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 5,6,7

В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

Прислать комментарий     Решение

Задача 30325  (#012)

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 2
Классы: 6,7

Сколькими способами можно сделать трёхцветный флаг с горизонтальными полосами одинаковой ширины, если имеется материя шести различных цветов?

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .