ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Алфутова Н.Б., Устинов А.В., Алгебра и теория чисел
>>
глава 4. Арифметика остатков
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) p, p + 10, p + 14 – простые числа. Найдите p. б) p, 2p + 1, 4p + 1 – простые числа. Найдите p. Решение |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 209]
Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры.
Найдите остатки от деления числа 22001 на 3, 5, 7, 9, 11, 13, 15, 17.
Шестизначное число делится на 7. Его первую цифру стёрли, а затем записали её позади последней цифры.
а) p, p + 10, p + 14 – простые числа. Найдите p. б) p, 2p + 1, 4p + 1 – простые числа. Найдите p.
p и 8p2 + 1 – простые числа. Найдите p.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 209] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|