ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На доске написаны числа 1, 2, 3, ..., 19, 20. Разрешается стереть любые два числа a и b и вместо них написать число  a + b – 1.
Какое число может остаться на доске после 19 таких операций?

   Решение

Задачи

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 559]      



Задача 30752  (#003)

Тема:   [ Инварианты ]
Сложность: 3-
Классы: 6,7,8

На доске написаны числа 1, 2, 3, ..., 19, 20. Разрешается стереть любые два числа a и b и вместо них написать число  a + b – 1.
Какое число может остаться на доске после 19 таких операций?

Прислать комментарий     Решение

Задача 30753  (#004)

Тема:   [ Инварианты ]
Сложность: 3+
Классы: 7,8

На доске выписаны числа 1, 2, ..., 20. Разрешается стереть любые два числа a и b и заменить их на число  ab + a + b.
Какое число может остаться на доске после 19 таких операций?

Прислать комментарий     Решение

Задача 30754  (#005)

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 6,7

На шести ёлках сидят шесть чижей, на каждой ёлке – по чижу. Ёлки растут в ряд с интервалами в 10 метров. Если какой-то чиж перелетает с одной ёлки на другую, то какой-то другой чиж обязательно перелетает на столько же метров, но в обратном направлении.
  а) Могут ли все чижи собраться на одной ёлке?
  б) А если чижей и ёлок – семь?

Прислать комментарий     Решение

Задача 30755  (#006)

Темы:   [ Таблицы и турниры (прочее) ]
[ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8

В таблице 8×8 одна из клеток закрашена чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.

Прислать комментарий     Решение

Задача 30756  (#007)

Темы:   [ Таблицы и турниры (прочее) ]
[ Инварианты ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8

В таблице 3×3 одна из угловых клеток закрашена чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.

Прислать комментарий     Решение

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .