|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан многочлен степени 2022 с целыми коэффициентами и со старшим коэффициентом 1. Какое наибольшее число корней он может иметь на интервале (0, 1)? Среди любых пяти узлов обычной клетчатой бумаги обязательно найдутся два, середина отрезка между которыми – тоже узел клетчатой бумаги. А какое минимальное количество узлов сетки из правильных шестиугольников необходимо взять, чтобы среди них обязательно нашлось два, середина отрезка между которыми – тоже узел этой сетки? Докажите, что в дереве каждые две вершины соединены ровно одним простым путем. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 52]
Докажите, что в дереве каждые две вершины соединены ровно одним простым путем.
Докажите, что в дереве есть вершина, из которой выходит ровно одно ребро (такая вершина называется висячей).
В графе все вершины имеют степень 3. Докажите, что в нём есть цикл.
Докажите, что при удалении любого ребра из дерева оно превращается в несвязный граф.
В стране Древляндия 101 город, и некоторые из них соединены дорогами. При этом каждые два города соединяет ровно один путь.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 52] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|