|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Шаблоном называется строка, состоящая из английских букв (a, ..., z, A, ..., Z) и символов ? и *. Каждый из символов ? разрешается заменить на одну произвольную букву, а каждый из символов * – на произвольную (возможно пустую) последовательность букв. Про любую строку из букв, которую можно получить из шаблона такими заменами, будем говорить, что она удовлетворяет этому шаблону. Имеются два шаблона. Требуется найти строку минимальной длины,
которая удовлетворяет обоим шаблона, либо выдать сообщение, что такой
строки не существует.
На клетчатом листе закрасили 25 клеток. Может ли каждая из них иметь нечётное число закрашенных соседей? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 41]
Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:
На плоскости дана замкнутая ломаная с конечным числом звеньев. Прямая l пересекает её ровно в 1985 точках.
На плоскости лежат три шайбы A, B и C. Хоккеист бьёт по одной из шайб так, чтобы она прошла между двумя другими и остановилась в некоторой точке. Могут ли все шайбы вернуться на свои места после25 ударов?
На клетчатом листе закрасили 25 клеток. Может ли каждая из них иметь нечётное число закрашенных соседей?
Окружность разбита точками на 3k дуг: по k дуг длины 1, 2 и 3. Докажите, что найдутся две диаметрально противоположные точки деления.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 41] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|