ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 644]      



Задача 32900

Тема:   [ Треугольник Паскаля и бином Ньютона ]
Сложность: 2
Классы: 7

Встречается ли в треугольнике Паскаля число 1999?

Прислать комментарий     Решение

Задача 32902

Тема:   [ Треугольник Паскаля и бином Ньютона ]
Сложность: 2
Классы: 7

Во сколько раз сумма чисел, стоящих в сто первой строке треугольника Паскаля, больше суммы чисел, стоящих в сотой строке?

Прислать комментарий     Решение

Задача 32903

Тема:   [ Треугольник Паскаля и бином Ньютона ]
Сложность: 2
Классы: 7

Проставим знаки плюс и минус в 99-й строке треугольника Паскаля. Между первым и вторым числом – минус, между вторым и третьим – плюс, между третьим и четвёртым – минус, потом опять плюс, и так далее. Найдите значение полученного выражения.

Прислать комментарий     Решение

Задача 32987

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 2
Классы: 7,8,9

Докажите, что уравнение  3x² + 2 = y²  нельзя решить в целых числах.

Прислать комментарий     Решение

Задача 32996

Тема:   [ Теория графов (прочее) ]
Сложность: 2
Классы: 8

Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .