ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Занятия:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Внутри остроугольного неравнобедренного треугольника $ABC$ отмечена точка $T$, такая что $\angle ATB = \angle BTC = 120^\circ$. Окружность с центром $E$ проходит через середины сторон треугольника $ABC$. Оказалось, что точки $B,T,E$ лежат на одной прямой. Найдите угол $ABC$. В треугольнике $ABC$ $(\angle C=90^{\circ})$, $CH$ – высота; $HA_{1}, HB_{1}$ – биссектрисы углов $\angle CHB, \angle AHC$ соответственно; $E, F$ – середины отрезков $HB_{1}$ и $HA_{1}$ соответственно. Докажите, что прямые $AE$ и $BF$ пересекаются на биссектрисе угла $ACB$. Сформулируйте и докажите признаки делимости на числа 2, 4, 8, 5 и 25. Число N записано в десятичной системе счисления N = Через точку внутри треугольника провели три чевианы. Оказалось, что длины шести отрезков, на которые они разбивают стороны треугольника, образуют в каком-то порядке геометрическую прогрессию. Докажите, что длины чевиан тоже образуют геометрическую прогрессию. Докажите, что можно найти более тысячи троек натуральных чисел a, b, c, для которых выполняется равенство a15 + b15 = c16. Пусть p – произвольное вещественное число. Найдите все такие x, что сумма кубических корней из чисел 1 – x и 1 + x равна p. а) Прямоугольная таблица из m строк и n столбцов заполнена числами. Переставим числа в каждой строке в порядке возрастания. Если после этого переставить числа в каждом столбце в порядке возрастания, то в каждой строке они по-прежнему будут стоять в порядке возрастания. Докажите это. Диагонали трапеции $ABCD$ ($BC\parallel AD$) пересекаются в точке $O$. На отрезках $BC$ и $AD$ выбраны соответственно точки $M$ и $N$. К окружности $AMC$ проведена касательная из $C$ до пересечения с лучом $NB$ в точке $P$; к окружности $BND$ из $D$ проведена касательная до пересечения с лучом $MA$ в точке $R$. Докажите, что $\angle BOP=\angle AOR$. Доказать, что не существует тетраэдра, в котором каждое ребро являлось бы стороной плоского тупого угла. Докажите, что если a, b, c, d, x, y, u, v – вещественные числа и abcd > 0, то (ax + bu)(av + by)(cx + dv)(cu + dy) ≥ (acuvx + bcuxy + advxy + bduvy)(acx + bcu + adv + bdy).
Заметим, что если перевернуть лист, на котором написаны цифры, то цифры 0, 1, 8 не изменятся, 6 и 9 поменяются местами, остальные потеряют смысл. Сколько существует девятизначных чисел, которые при переворачивании листа не изменяются? Назовём квартетом четвёрку клеток на клетчатой бумаге, центры которых лежат в вершинах прямоугольника со сторонами, параллельными линиям сетки. (Например, на рисунке нарисованы три квартета.) Какое наибольшее число квартетов можно разместить в Доказать: сумма |
Страница: 1 2 >> [Всего задач: 8]
Доказать: сумма
Доказать: произведение
Конь вышел с поля a1 и через несколько ходов вернулся на него. Докажите, что он сделал чётное число ходов.
Вася шёл от дома до автобусной остановки пешком со скоростью 4 км/ч, затем ехал на автобусе до школы со скоростью 30 км/ч и затратил на весь путь 1 час. Обратно из школы он ехал на автобусе со скоростью 36 км/ч и шёл пешком от остановки до дома со скоростью 3 км/ч. На обратную дорогу он потратил 1 час 5 мин. Найти путь, который Вася проехал на автобусе, и расстояние от дома до остановки.
На прямой даны точки А, В и, кроме того, 57 точек, лежащих вне отрезка АВ. Каждая из этих 57 точек – либо красного, либо синего цвета. Рассмотрим следующие суммы:
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке