ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На сторонах AB, BC и CA треугольника ABC (или на их продолжениях) взяты точки C1, A1 и B1 так, что  ∠(CC1, AB) = ∠(AA1, BC) = ∠(BB1, CA) = α.  Прямые AA1 и BB1, BB1 и CC1, CC1 и AA1 пересекаются в точках C', A', B' соответственно. Докажите, что:
  а) точка пересечения высот треугольника ABC совпадает с центром описанной окружности треугольника A'B'C';
  б) треугольники A'B'C' и ABC подобны, причём коэффициент подобия равен  2 cos α.

Вниз   Решение


В вершинах куба расставлены цифры 1, 2, ..., 8. Докажите, что есть ребро, цифры на концах которого отличаются не менее чем на 3.

Вверх   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 7526]      



Задача 34994

Темы:   [ Уравнения в целых числах ]
[ Произведения и факториалы ]
Сложность: 2+
Классы: 8,9,10

Докажите, что уравнение  x! y! = z!  имеет бесконечно много решений в натуральных числах, больших 1.

Прислать комментарий     Решение

Задача 35011

Тема:   [ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 2+
Классы: 9

Диагонали четырёхугольника ABCD пересекаются в точке O.
Докажите, что произведение площадей треугольников AOB и COD равно произведению площадей треугольников BOC и DOA.

Прислать комментарий     Решение

Задача 35034

Тема:   [ ГМТ с ненулевой площадью ]
Сложность: 2+
Классы: 8,9

Среди поля проходит прямая дорога, по которой со скоростью 10 км/ч едет автобус. Укажите все точки на поле, из которых можно догнать автобус, если бежать с такой же скоростью.
Прислать комментарий     Решение


Задача 35045

 [Задача Гельфанда]
Темы:   [ Задачи на смеси и концентрации ]
[ Инварианты ]
Сложность: 2+
Классы: 6,7,8,9

В одном стакане было молоко, а в другом – столько же кофе. Из стакана молока перелили одну ложку в стакан с кофе и размешали. Затем такую же ложку смеси перелили обратно в стакан с молоком. Чего теперь больше: кофе в стакане с молоком или молока в стакане с кофе?

Прислать комментарий     Решение

Задача 35054

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 7,8

В вершинах куба расставлены цифры 1, 2, ..., 8. Докажите, что есть ребро, цифры на концах которого отличаются не менее чем на 3.

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .