|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Некоторое натуральное число n имеет два простых делителя. Его квадрат имеет а) 15; б) 81 делителей. Сколько делителей имеет куб этого числа? Фиксированы окружность, точка A на ней и точка K вне окружности. Секущая, проходящая через K, пересекает окружность в точках P и Q. Докажите, что ортоцентры треугольников APQ лежат на фиксированной окружности. Найдите число нулей, на которое оканчивается число 11100 – 1. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]
Докажите, что для любого простого числа p > 2 числитель дроби m/n = 1/1 + 1/2 + ... + 1/p–1 делится на p.
Натуральные числа m и n таковы, что m > n,
m не делится на n и имеет от деления на n тот же остаток,
что и m + n от деления на m – n.
a, b, c – целые числа, причём a + b + c делится на 6. Докажите, что a³ + b³ + c³ тоже делится на 6.
Найдите число нулей, на которое оканчивается число 11100 – 1.
Сколько имеется прямоугольных треугольников, длины сторон которых выражены целыми числами, если один из катетов этих треугольников равен 15?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 27] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|