Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

Высоты AA1, BB1, CC1 и DD1 тетраэдра ABCD пересекаются в центре H сферы, вписанной в тетраэдр A1B1C1D1.
Докажите, что тетраэдр ABCD – правильный.

Вниз   Решение


Можно ли расположить бесконечное число равных выпуклых многогранников в слое, ограниченном двумя параллельными плоскостями, так чтобы ни один многогранник нельзя было вынуть из слоя, не сдвигая остальных?

ВверхВниз   Решение


Сфера вписана в правильную треугольную пирамиду SKLM ( S – вершина), а также вписана в прямую треугольную призму ABCA1B1C1 , у которой AB=AC , BC=4 , боковое ребро AA1 лежит на прямой KL . Найдите радиус сферы, если известно, что прямая SM параллельна плоскости BB1C1C .

ВверхВниз   Решение


Зайчиха купила для своих семерых зайчат семь барабанов разных размеров и семь пар палочек разной длины. Если зайчонок видит, что у него и барабан больше, и палочки длиннее, чем у кого-то из братьев, он начинает громко барабанить. Какое наибольшее число зайчат сможет начать барабанить?

ВверхВниз   Решение


В некоторых клетках таблицы 10x10 расставлены несколько крести- ков и несколько ноликов. Известно, что нет линии (строки или столб- ца), полностью заполненной одинаковыми значками (крестиками или ноликами). Однако, если в любую пустую клетку поставить любой значок, то это условие нарушится. Какое минимальное число значков может стоять в таблице?

ВверхВниз   Решение


Четырехугольник ABCD описан около окружности. Докажите, что радиус этой окружности меньше суммы радиусов окружностей, вписанных в треугольники ABC и ACD .

ВверхВниз   Решение


В четырехугольник ABCD можно вписать окружность. Пусть K — точка пересечения его диагоналей. Известно, что AB > BC > BK, BK = $ \sqrt{14}$ + 2, косинус угла BCK равен ( $ \sqrt{14}$ - 2) /6, а периметр треугольника BKC равен 2$ \sqrt{14}$ + 6. Найдите DC.

ВверхВниз   Решение


Доказать, что если 21 человек собрали 200 орехов, то есть два человека, собравшие поровну орехов.

ВверхВниз   Решение


На сторонах AB, AC и BC правильного треугольника ABC расположены соответственно точки C1, B1 и A1 так, что треугольник A1B1C1 – правильный. Отрезок BB1 пересекает сторону C1A1 в точке O, причём  BO/OB1 = k.  Найдите отношение площади треугольника ABC к площади треугольника A1B1C1.

ВверхВниз   Решение


В треугольнике ABC на стороне AC взята точка K, причём  AK = 1,  KC = 3,  а на стороне AB взята точка L, причём  AL : LB = 2 : 3.  Пусть Q – точка пересечения прямых BK и CL. Площадь треугольника AQC равна 1. Найдите высоту треугольника ABC, опущенную из вершины B.

ВверхВниз   Решение


Автор: Фольклор

На доске записаны числа 1, 21, 2², 2³, 24, 25. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.
Может ли на доске в результате нескольких таких операций остаться только число 15?

ВверхВниз   Решение


Про числа a и b известно, что a=b+1 . Может ли оказаться так, что a4=b4 ?

ВверхВниз   Решение


Медианы треугольника равны 5, 6 и 5. Найдите площадь треугольника.

ВверхВниз   Решение


Художник-авангардист Змий Клеточкин покрасил несколько клеток доски размером 7×7, соблюдая правило: каждая следующая закрашиваемая клетка должна соседствовать по стороне с предыдущей закрашенной клеткой, но не должна соседствовать ни с одной другой ранее закрашенной клеткой. Ему удалось покрасить 31 клетку.

Побейте его рекорд — закрасьте а) 32 клетки; б) 33 клетки.

ВверхВниз   Решение


В каждом из 16 отделений коробки 4×4 лежит по золотой монете. Коллекционер помнит, что какие-то две лежащие рядом монеты (соседние по стороне) весят по 9 грамм, а остальные по 10 грамм. За какое наименьшее число взвешиваний на весах, показывающих общий вес в граммах, можно определить эти две монеты?

ВверхВниз   Решение



Пусть M - точка пересечения медиан треугольника ABC, O - произвольная точка пространства. Докажите, что

OM2 = $\displaystyle {\textstyle\frac{1}{3}}$(OA2 + OB2 + OC2) - $\displaystyle {\textstyle\frac{1}{9}}$(AB2 + BC2 + AC2).

ВверхВниз   Решение


а) К любому ли шестизначному числу, начинающемуся с цифры 5, можно приписать еще 6 цифр так, чтобы полученное 12-значное число было полным квадратом?
б) Тот же вопрос про число, начинающееся с 1.
в) Найдите для каждого n такое наименьшее  k = k(n),  что к каждому n-значному числу можно приписать еще k цифр так, чтобы полученное (n+k)-значное число было полным квадратом.

ВверхВниз   Решение


Докажите, что центр описанной окружности прямоугольного треугольника совпадает с серединой гипотенузы.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 6702]      



Задача 86861

Тема:   [ Правильная пирамида ]
Сложность: 2
Классы: 10,11


Докажите, что в любой правильной пирамиде все боковые ребра равны.

Прислать комментарий     Решение


Задача 87046

Тема:   [ Геометрия (прочее) ]
Сложность: 2
Классы: 10,11


Пусть M - точка пересечения медиан треугольника ABC, O - произвольная точка пространства. Докажите, что

OM2 = $\displaystyle {\textstyle\frac{1}{3}}$(OA2 + OB2 + OC2) - $\displaystyle {\textstyle\frac{1}{9}}$(AB2 + BC2 + AC2).

Прислать комментарий     Решение

Задача 87048

Тема:   [ Геометрия (прочее) ]
Сложность: 2
Классы: 10,11


Даны три некомпланарных вектора. Существует ли четвертый вектор, перпендикулярный трем данным?

Прислать комментарий     Решение


Задача 87266

Тема:   [ Геометрия (прочее) ]
Сложность: 2
Классы: 10,11


Найдите объем наклонной треугольной призмы, основанием которой служит равносторонний треугольник со стороной, равной a, если боковое ребро призмы равно стороне основания и наклонено к плоскости основания под углом 60o.

Прислать комментарий     Решение


Задача 52346

Темы:   [ Вписанные и описанные окружности ]
[ Медиана, проведенная к гипотенузе ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 2
Классы: 8,9

Докажите, что центр описанной окружности прямоугольного треугольника совпадает с серединой гипотенузы.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .