ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах AC и BC треугольника ABC взяты соответственно точки M и N, причём  MN || AB  и  MN = AM.
Найдите угол BAN, если  ∠B = 45°  и  ∠C = 60°.

   Решение

Задачи

Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 6702]      



Задача 53439

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3-
Классы: 8,9

На сторонах AC и BC треугольника ABC взяты соответственно точки M и N, причём  MN || AB  и  MN = AM.
Найдите угол BAN, если  ∠B = 45°  и  ∠C = 60°.

Прислать комментарий     Решение

Задача 53445

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
Сложность: 3-
Классы: 8,9

Два угла треугольника равны 10° и 70°. Найдите угол между высотой и биссектрисой, проведёнными из вершины третьего угла треугольника.

Прислать комментарий     Решение

Задача 53449

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Углы между биссектрисами ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3-
Классы: 8,9

Высоты остроугольного треугольника ABC, проведённые из вершин A и B, пересекаются в точке H, причём  ∠AHB = 120°,  а биссектрисы, проведённые из вершин B и C, – в точке K, причём  ∠BKC = 130°.  Найдите угол ABC.

Прислать комментарий     Решение

Задача 53453

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Прямоугольные треугольники ]
Сложность: 3-
Классы: 8,9

Острый угол прямоугольного треугольника равен 30°, а гипотенуза равна 8.
Найдите отрезки, на которые делит гипотенузу высота, проведённая из вершины прямого угла.

Прислать комментарий     Решение

Задача 53475

 [Теорема Вариньона]
Темы:   [ Параллелограмм Вариньона ]
[ Средняя линия треугольника ]
Сложность: 3-
Классы: 8,9

Докажите, что середины сторон любого четырёхугольника являются вершинами параллелограмма.

Прислать комментарий     Решение


Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .