ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Дана сфера радиуса 1. На ней расположены равные окружности γ0, γ1, ..., γn радиуса r (n ≥ 3). Окружность γ0 касается всех окружностей γ1, ..., γn; кроме того, касаются друг друга окружности γ1 и γ2, γ2 и γ3, ..., γn и γ1. При каких n это возможно? Вычислите соответствующий радиус r.

Вниз   Решение


Докажите, что система неравенств
    |x| > |y – z + t|,
    |y| > |x – z + t|,
    |z| > |x – y + t|,
    |t| > |x – y + z|
не имеет решений.

ВверхВниз   Решение


Докажите, что не существует графа без петель и кратных рёбер с пятью вершинами, степени которых равны 4, 4, 4, 4, 2.

ВверхВниз   Решение


Дан четырёхугольник; A, B, C, D — последовательные середины его сторон, P, Q — середины диагоналей. Доказать, что треугольник BCP равен треугольнику ADQ.

ВверхВниз   Решение


Мальвина испекла 30 пирожков и угощает ими Пьеро, Буратино, Артемона и Арлекина. Через некоторое время оказалось, что Буратино и Пьеро съели столько же, сколько Артемон и Арлекин, а Пьеро и Артемон – в 6 раз больше, чем Буратино и Арлекин. Какое количество пирожков съел каждый, если Арлекин съел меньше всех остальных? (Все съедали пирожки целиком, и каждый съел хотя бы один пирожок.)

ВверхВниз   Решение


Найдите периметр параллелограмма, если биссектриса одного из его углов делит сторону параллелограмма на отрезки 7 и 14.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 15]      



Задача 103963

 [Делимость на 10]
Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 6,7,8

Доказать, что среди любых одиннадцати целых чисел найдутся два, разность между которыми делится на 10.
Прислать комментарий     Решение


Задача 30368

Темы:   [ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3-
Классы: 6,7,8

Целые числа a и b таковы, что  56a = 65b.  Докажите, что   a + b  – составное число.

Прислать комментарий     Решение

Задача 53484

Темы:   [ Признаки и свойства параллелограмма ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3-
Классы: 8,9

Найдите периметр параллелограмма, если биссектриса одного из его углов делит сторону параллелограмма на отрезки 7 и 14.

Прислать комментарий     Решение

Задача 30367

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 6,7,8

Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?

Прислать комментарий     Решение

Задача 103964

 [Делимость на n]
Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .