ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны окружность S, точка P, расположенная вне S,
и прямая l, проходящая через P и пересекающая окружность
в точках A и B. Точку пересечения касательных к окружности
в точках A и B обозначим через K.
Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Разрешается проделывать следующее преобразование (перестройку): взяв пару треугольников ABD и BCD с общей стороной, заменить их на треугольники ABC и ACD. Пусть P(n) – наименьшее число перестроек, за которое можно перевести каждое разбиение в любое. Докажите, что α, β и γ - углы треугольника ABC. Докажите, что
Пусть ABCDEF — описанный шестиугольник. Докажите, что его
диагонали AD, BE и CF пересекаются в одной точке (Брианшон).
а) Даны прямая l и точка P вне ее. Циркулем
и линейкой постройте на l отрезок XY данной длины,
который виден из P под данным углом Вневписанная окружность треугольника ABC касается стороны BC
в точке D, а продолжений сторон AB и AC —
в точках E и F. Пусть T — точка пересечения прямых BF
и CE. Докажите, что точки A, D и T лежат на одной прямой.
Найдите все положительные числа x1, x2, ..., x10, удовлетворяющие при всех k = 1, 2,..., 10 условию (x1 + ... + xk)(xk + ... + x10) = 1. Во вписанном четырехугольнике $ABCD$ произведения противоположных сторон равны. Точка $B'$ симметрична $B$ относительно прямой $AC$. Докажите, что окружность, проходящая через точки $A$, $B'$, $D$, касается прямой $AC$. Пусть α, β и γ - углы треугольника ABC. Докажите, что
В треугольнике $ABC$ точки $O$ и $H$ – центр описанной окружности и ортоцентр соответственно. Известно, что $BH$ – биссектриса угла $ABO$. Отрезок из точки $O$, параллельный стороне $AB$, пересекает сторону $AC$ в точке $K$. Докажите, что $AH=AK$. В Швамбрании N городов, каждые два соединены дорогой. При этом дороги
сходятся лишь в городах (нет перекрёстков, одна дорога поднята эстакадой над
другой). Злой волшебник устанавливает на всех дорогах одностороннее движение
таким образом, что если из города можно выехать, то в него нельзя вернуться.
Доказать, что
α, β и γ - углы треугольника ABC. Докажите, что
Точки A, B, C и D лежат на окружности, SA и SD —
касательные к этой окружности, P и Q — точки
пересечения прямых AB и CD, AC и BD соответственно.
Докажите, что точки P, Q и S лежат на одной прямой.
На сторонах $AB$, $BC$, $CA$ треугольника $ABC$ выбраны точки $P$, $Q$, $R$ соответственно так, что $AP=PR$, $CQ=QR$. Точка $H$ – ортоцентр треугольника $PQR$, точка $O$ – центр описанной окружности треугольника $ABC$. Докажите, что $OH \parallel AC$. Докажите, что если K чётно, то числа от 1 до K – 1 можно выписать в таком порядке, что сумма никаких нескольких подряд стоящих чисел не будет делиться на K. Прямая $\ell$, параллельная стороне $BC$ треугольника $ABC$, касается его вписанной окружности и пересекает его описанную окружность в точках $D$ и $E$. Пусть $I$ – центр вписанной окружности треугольника $ABC$. Докажите, что $AI^2 = AD\cdot AE$. Назовём тройку чисел триплетом, если одно из них равно среднему арифметическому двух других. Последовательность $(a_n)$ строится следующим образом: $a_0 = 0$, $a_1 = 1$ и при $n > 1$ число $a_n$ — такое минимальное натуральное число, большее $a_{n-1}$, что среди чисел $a_0$, $a_1$, ..., $a_n$ нет трёх, образующих триплет. Докажите, что $a_{2023} \leqslant 100\,000$. Известно, что p > 3 и p – простое число. Выпуклые четырёхугольники ABCD и PQRS вырезаны соответственно из бумаги и картона. Будем говорить, что они подходят друг к другу, если выполняются два условия: а) Докажите, что в любом многоугольнике, кроме треугольника, есть хотя бы одна диагональ, целиком лежащая внутри него. На каждой стороне параллелограмма взято по точке.
Площадь четырехугольника с вершинами в этих точках равна половине
площади параллелограмма. Докажите, что хотя бы одна из диагоналей
четырехугольника параллельна стороне параллелограмма.
|
Страница: << 1 2 [Всего задач: 8]
На каждой стороне параллелограмма взято по точке.
Площадь четырехугольника с вершинами в этих точках равна половине
площади параллелограмма. Докажите, что хотя бы одна из диагоналей
четырехугольника параллельна стороне параллелограмма.
Точки K и M — середины сторон AB и CD
выпуклого четырехугольника ABCD, точки L и N расположены на
сторонах BC и AD так, что KLMN — прямоугольник.
Докажите, что площадь четырехугольника ABCD вдвое
больше площади прямоугольника KLMN.
Квадрат разделен на четыре части двумя
перпендикулярными прямыми, точка пересечения которых лежит
внутри его. Докажите, что если площади трех из этих частей
равны, то равны и площади всех четырех частей.
Страница: << 1 2 [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке